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Abstract. Deep learning methods have frequently outperformed conceptual hydrologic models in rainfall-runoff modelling.

Attempts of investigating the internals of such deep learning models are being made but traceability of model states and pro-

cesses and their interrelations to model input and output is not yet fully given. Direct interpretability of mechanistic processes

has always been considered as asset of conceptual models that helps to gain system understanding aside of predictability. We

introduce hydrologic Neural Ordinary Differential Equation (ODE) models that perform as well as state-of-the-art deep learn-5

ing methods in stream flow prediction while maintaining the ease of interpretability of conceptual hydrologic models. In Neural

ODEs, internal processes that are represented in differential equations are substituted by neural networks. Therefore, Neural

ODE models enable fusing deep learning with mechanistic modelling. We demonstrate the basin-specific predictive perfor-

mance for several hundred catchments of the continental USA. For exemplary basins, we analyse the dynamics of states and

processes learned by the model-internal neural networks. Finally, we discuss the potential of Neural ODE models in hydrology.10

1 Introduction

1.1 Machine Learning in Hydrology

Deep learning models, in particular long-short-term memory (LSTM) neural networks, have outperformed traditionally used

conceptual models in hydrologic modelling (Kratzert et al., 2018; Feng et al., 2020; Lees et al., 2021a). Machine learning

methods provide great versatility (Shen, 2018; Shen et al., 2018; Reichstein et al., 2019) and have demonstrated unprece-15

dented accuracy in various modelling tasks like predictions in un-gauged basins (PUB, e.g. Kratzert et al., 2019b; Prieto et al.,

2019), in transfer learning to data-scarce regions (Ma et al., 2021) or flood forecasting (Frame et al., 2021; Nevo et al., 2021).

Nonetheless, deep learning remains a field of progress with gaps to fill. We want to focus on three of them that are particularly

relevant in hydrology.

20

First, machine learning models are still not as easily interpretable as traditionally-used physics-based conceptual hydrologic

models are. Although high predictive accuracy is crucial to all modeling tasks, it is often not the only purpose. Especially

when dealing with complex systems as it is the case in hydrology, learning about the system and understanding its internal and

external interrelations is just as important to many researchers. There have been first attempts in this direction by investigating
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what happens inside machine learning models (Kratzert et al., 2019a). Generally, research on explainable artificial intelligence25

(XAI) or "interpretable machine learning" (e.g. Samek et al., 2019; Montavon et al., 2018; Molnar et al., 2020; Molnar, 2020)

has strongly advanced in recent years. Specifically, in hydrologic modelling, ties between internal model states and hydrologi-

cal processes are being elicited (Lees et al., 2021b).

Therefore, it becomes more and more inaccurate to label machine learning methods as black boxes since techniques exist30

that shed light on the internals of machine learning methods (see also Nearing et al., 2021; Frame et al., 2021) - turning them

toward so-called grey box models. Yet, internal investigation of machine learning models relies on additional methods that

come with their own assumptions and caveats, and the current straight-forward interpretability of conceptual models serves as

benchmark in the hydrologic community. Much environmental research is dedicated toward extrapolation in space, in time and

of boundary conditions, in order to investigate extreme events (Frame et al., 2021), climate change projections (Nearing et al.,35

2019) and so on. In all these fields ease of interpretability is desirable.

Second, while the introduction of system memory as physical principle (like in LSTM models) turned out to be crucial

for hydrograph prediction, other basic physical principles are not necessarily fulfilled, yet. Currently used machine learning

approaches are limited to fixed time steps that restricts their usage. For instance, while LSTM approaches work well on daily40

timescales, high-flow events often occur on a higher temporal resolution and can therefore not be as well resolved. For LSTM

models, recent developments show adoption approaches to finer time intervals, as from daily to hourly (Gauch et al., 2021) or

introduce continuous-time hidden-states within the LSTM framework in order to internally update their step-wise dynamics

(Lechner and Hasani, 2020). Yet, thereby, modelling becomes more interlaced, and computational effort increases without

increasing system understanding. Despite all the progress in this field, real-world systems with their states and processes are45

time-continuous and from a physics perspective it remains unsatisfactory when models are restricted to certain time scales.

Further, attempts to enforce fundamental principles like mass-balance were made but showed that this constraint might even

worsen predictive power compared to the unconstrained LSTM variants Hoedt et al. (2021).

Third, there is often prior knowledge that cannot be included into machine-learning models. Data-driven modelling demon-50

strates impressive abilities in terms of mimicking and/or improving the translation from driving forces variables through the

system into its output, like from precipitation to discharge in hydrology. Yet, the question remains why such models have to

use only data to learn all the internals of the system from scratch. Much knowledge about hydrology has been gathered in

the past so why not providing such knowledge, e.g., mechanistic structure, reliable causal interrelations and context-specific

information (Rackauckas et al., 2020), to the models directly? Of course, the risk impends that certain constitutive relations as55

they are used in mechanistic processes might be inexact or misleading. Nonetheless, on the one hand we can rely on many basic

principles that are generally agreed upon, and on the other hand, including constitutive relations has the potential of providing

additional knowledge on hydrological processes aside from data alone.
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1.2 Conceptual Hydrologic Models60

For conceptual hydrologic models, these gaps have been mostly closed over the last decades: The development of conceptual

bucket-type models rests on the deductive insight that physical principles do hold in general. Basic building blocks have been

elicited and modular frameworks allow to tailor models for any task at hand (Fenicia et al., 2011; Clark et al., 2015) while

maintaining full interpretability of each element. Knowledge about local conditions is used to improve the models (Gnann

et al., 2021), fostering both system understanding and accuracy in predictions (Kirchner, 2006; Fenicia et al., 2014) in typi-65

cally data-limited modelling tasks (Fenicia et al., 2008; Li et al., 2021).

Yet, there remains a dichotomy between bottom-up and top-down approaches in hydrology (Savenije, 2009; Gharari et al.,

2021). In the former, process knowledge that was acquired at smaller scales is generalized to catchment scale while in the latter

prediction and interpretation of the hydrologic system is based on the overall catchment response (Sivapalan et al., 2003). The70

bottom-up approach yields physically-based and distributed models (Abbott et al., 1986; Loritz et al., 2018) and, over recent

years, different methods have been investigated to learn constitutive equations directly from data (Gharari et al., 2021). Top-

down models have been widely explored using different modelling approaches which include the present range of conceptual

model structures (see Knoben et al., 2020), aided by flexible frameworks such as Superflex (Fenicia et al., 2011) or FUSE

(Clark et al., 2008), or transfer function models (Young, 2003). Both approaches seek to obtain parsimonious models that shall75

be as simple as possible for the sake of interpretability and complex enough to achieve high predictive accuracy (Höge et al.,

2018; Gharari et al., 2021). Often enough, only a few model states and processes (see, e.g. Patil and Stieglitz, 2014) are suffi-

cient as effective theory to describe an entire hydrologic system (Kirchner, 2009; Fenicia et al., 2016). However, the plethora

of hydrologic models itself points at the fact that no single model or framework exists that is always applicable.

80

Recently, attempts have been made to develop models that fuse both model types in order to alleviate the shortcomings of

each type (e.g., Zhao et al., 2019; Bennett and Nijssen, 2021). For example, Jiang et al. (2020) used convolutional neural

networks (CNN) to predict discharge time series taking meteorological input time series and the output from a conceptual

hydrologic model as inputs. There, the hydrologic model output acts as physical guidance that is used aside of driving input

forces like precipitation by a CNN to achieve better discharge predictions. In their workflow, the application of the neural85

network serves as a postprocessing to the hydrologic model simulation. Therefore, we refer to this approach as external hybrid

modelling.

1.3 Scientific Machine Learning and Neural ODEs

Yet, none of the pure or novel hybrid machine learning approaches has addressed all the above gaps regarding interpretability,90

physics and knowledge at once. Here, we introduce a different hybrid modelling approach that is able to close them simultane-

ously and that also has the potential to help dissolving the dichotomy in hydrology. We employ Neural Ordinary Differential
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Equation (ODE) models (Chen et al., 2018; Rackauckas et al., 2020), i.e., models based on differential equations with terms

that are substituted by neural networks partially or entirely. Neural ODEs fuse mechanistic physics with machine learning and

their appeal is twofold: First, differential equations as mathematically elegant representations of scientific interrelations have95

been well investigated and widely used. Neural ODEs extend this framework. Second, it is much easier for a neural network to

not learn the behaviour of the observable directly but to encode the mechanism behind that determines the observed behaviour

(Rackauckas et al., 2020). In other words, the derivatives often have simpler functional relationships than their solution. Com-

parably simple mechanistic interrelations sometimes lead to very complex observable outcomes like, e.g., chaos.

100

On a broader scope, this is the field of scientific machine learning introduced by Rackauckas et al. (2020) that seeks to bring

together both the knowledge contained in data (bottom-up) and knowledge from expertise (top-down), and leverage both for

greater knowledge gain, higher predictive power and increased system understanding. The rationale behind scientific machine

learning is that reliable inter- and extrapolation in science has always overwhelmingly been due to mechanistic laws that im-

pose physical structure to the problem at hand. With pure data-driven approaches this structure has to be learned entirely from105

data. Here, the inclusion of mechanistic principles might help to fill knowledge gaps, especially in data-limited contexts, and

novel differentiable programming tools foster its application in scientific computing (Innes et al., 2019). In scientific machine

learning it is possible (and desired) to include physical structure and processes that are known mechanistically as hard-coded

features and leave what is not known or only known vaguely to the data-driven method.

110

Deep learning methods in hydrology have proven their ability to process integrated site-specific information to improve dis-

charge prediction tremendously (Kratzert et al., 2019c). This has not been possible with conceptual models. Nonetheless, there

might be catchments with unique features or site-specific conditions that are invisible to machine learning methods due to only

using averaged attributes or due to the fact that these features are exceptions and distinctively different from any other basin.

Further, it might be impossible to provide respective information (like highly resolved spatially explicit features) to a machine115

learning method since it becomes computationally infeasible. Pure machine learning approaches are not meant to be modified

by adding specifics via hard-coding additional formulas into the model. Contrarily, scientific machine learning provides an

interactive framework where knowledge can be included explicitly, allowing us to “put humans into the loop” (e.g. Holzinger,

2016) if desired, and not to leave this resource of knowledge aside. This pertains to, e.g., identifying plausible processes based

on mechanistic understanding, or to providing context information: seasonal features, specific topography, geology (e.g. karst),120

and so on. We introduce scientific machine learning for hydrology by leveraging a physics-based conceptual hydrologic model

with one or several neural networks, substituting mechanisms in the underlying mass-balance ODEs.

The remainder of this article is structured as follows: In Section 2, we introduce our model and the used data as well as the

chosen training and evaluation procedure. In Section 3, we rate predictive accuracy of our models on a few common hydrologic125

metrics. There, we present our internal hybrid approach in direct conjunction to state-of-the-art results from Jiang et al. (2020).
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In Section 4 we analyse model internal states and processes dynamics of our Neural ODE models. We discuss the results and

their implication in Section 5. Finally, we close with a conclusion and outlook in Section 6.

2 Methods

2.1 Models130

As baseline conceptual framework, we work with a typical hydrologic bucket-type model. We employ the structure of the

simple rainfall-runoff model EXP-Hydro (Patil and Stieglitz, 2014). The model comprises only two state variables as buckets:

snow storage Ssnow and so-called catchment water storage Swater; and five mechanistic processes: precipitation of rain Prain

and snow Psnow, melting M , evapotranspiration ẼT and discharge Q. In general terms, the coupled ODE model structure

writes as:135

dSsnow(t)
dt

= Psnow(I(t);Θ)−M(I(t);Θ) (1)

dSwater(t)
dt

= Prain(I(t);Θ) +M(I(t);Θ)−Lday(t) · ẼT (I(t);Θ)−Q(I(t);Θ) (2)

with time t, length of day Lday(t) and model parameters Θ. Model inputs and internal states are defined as I(t) = (T (t),P (t),

Ssnow(t),Swater(t))T, with temperature T (t) and precipitation P (t) as driving forces and model states Ssnow(t) and Swater(t).

Depending on the process, not every element in the generally formulated I(t) might be used. Note that the actual estimated140

evapotranspirative flux ET is ẼT multiplied by Lday(t). The conceptual model structure is shown schematically in Figure 1 (a).

EXP-Hydro as originally developed by Patil and Stieglitz (2014) and re-implemented by Jiang et al. (2020) is discretized for

daily time steps. Opposed thereto, we use a solver with adaptive time stepping (see Rackauckas and Nie, 2017). Since input

data series are only available with fixed observation times, we apply monotonic interpolation using Steffen’s method (Steffen,145

1990). To foster comparability, we use EXP-Hydro as implemented by Jiang et al. (2020) as starting point but transferred it to

the programming language Julia (Bezanson et al., 2017). All original equations of the five mechanistic processes with process-

specific driving forces, model states and model parameters can be found in Appendix A1. Note that, there, the precipitation

terms in Equations 1 and 2 do not have any dependence on model states while discharge only depends on the model state

Swater(t).150

We refer to our implementation of EXP-Hydro as model M0. In total, we set up three different models with numbers in the

model name indicating the percentage of neural network fraction within the model. Our models M50 and M100 have terms

in Equations (1) and (2) substituted by feed-forward neural networks. To build M50, we replaced the mechanistic formulas of

evapotranspiration and discharge by two small neural networks, NN50
ET and NN50

Q , respectively. As indicated in Figure 1 (b),155

both NNs have two hidden layers with 16 nodes each, one output node and input nodes for all driving forces variables and
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model states that are considered relevant. Compared to the plain mechanistic process (see Equation A3), also Ssnow is an ad-

ditional input to the ẼT
50

, accounting for any interference of snow cover with evapotranspirative fluxes. Regarding discharge

Q50, precipitation (without specification about whether as rain or as snow) serves as an additional input, potentially allowing

the network to emulate processes like direct surface run-off.160

(a) (b) (c)

ET

Ssnow

Prain

Psnow

Swater
M Q

NNET
50

NNQ
50

NN
100

50

50

100

100

100

100

100

Figure 1. Scheme of (a) the conceptual model (M0), (b) the neural networks in M50, and (c) the single neural network in M100: (a) The

model structure with 2 model states and 5 processes; (b) The two small neural networks in M50 that substitute evapotranspiration (NN50
ET )

and discharge (NN50
Q ) have only one output node and each has an additional input variable compared to the basic mechanistic process. (c)

The large neural network (NN100) has five output nodes - one for each substituted process - and all driving forces and model states as input.

As shown in Figure 1 (c), M100 contains only one single neural network NN100 with five output nodes substituting all

mechanistic processes in the model. M100 has both external input variables temperature and precipitation as well as the

internal states of snow and water storage as inputs. The neural network has five hidden layers, each with 32 nodes, and the five

model processes in Equations (1) and (2) are replaced by output nodes P 100
snow(t), P 100

rain(t), M100(t), ET 100(t) and Q100(t),165

respectively. A more detailed rationale for developing models M50 and M100 from M0 is available in Section A2.

2.2 Data

We use the data provided in the CAMELS-US dataset (Addor et al., 2017) that contains catchment-specific uniformly orga-

nized data for 671 catchments. The dynamic time series in this dataset have a daily resolution. Besides the discharge time
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series, they cover also the three input forcing variables to the model: day length, temperature and precipitation. Specifically,170

the forcings are based on the Daymet data set, that has the spatial highest resolution (1km x 1km) compared to the available

alternatives (Newman et al., 2015, and references therein). Daymet was also used by Jiang et al. (2020) and it showed to give

the best results among the alternative input data sources in other modelling attempts (Newman et al., 2015; Kratzert et al., 2021).

In our model evaluation, we also use lumped snow water equivalent (SWE) time series data for each basin. Aside of the175

catchment-integrated time series such as those for temperature or precipitation, the CAMELS dataset contains dynamic data

provided for different elevation bands in each basin, including SWE time series. Each elevation band is assigned a respective

area as fraction of the full catchment area. Using this information, we integrate the SWE data as an area weighted average in

order to obtain lumped SWE data for each catchment. Note that SWE is not used as model input in calibration. The observed

SWE are solely used for comparison with the dynamics of the snow storage Ssnow of the models.180

From the 671 available catchments, we use the same 569 as in Jiang et al. (2020). Likewise, the calibration/training period is

set to 1.10.1980 - 30.9.2000 and the validation/test period to 1.10.2000 - 30.9.2010, comprising of 20 and 10 hydrologic years,

respectively. Model evaluation is based on the validation period only.

2.3 Procedure and Model Rating185

Our models are calibrated to each catchment specifically and validated on the same catchment. The procedure is structured as

follows, with steps 2 and 3 only applying to Neural ODE models:

1. Conceptual hydrologic model training: M0 is calibrated with the training data using only the Nash-Sutcliffe efficiency

(see Equation (3) below) as objective function.

2. Neural network pre-training: Each internal process of the calibrated M0 is simulated individually using the required190

driving variables or simulated model states over the training period. Then, the neural network(s) that shall substitute the

respective processes are trained on these simulated process data series with sum of squared errors as objective function.

3. Neural ODE model training: the pre-trained neural networks are inserted into the conceptual model framework and the

entire Neural ODE model is trained on the calibration data.

Over the different steps, we enable knowledge transfer between the models: results from the trained conceptual hydrologic195

model are used as example for the neural network(s) to learn general relations between input variables and output quantities.

These relations are then improved and refined in the Neural ODE training step. After successful training, we conduct a twofold

evaluation of the models with validation data from test period between 1.10.2000 and 30.9.2010:

1. We benchmark the models by three metrics commonly used in hydrology (cf. Jiang et al., 2020) and compare them to

state-of-the-art model approaches (see Section 3).200
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2. We analyse internal model states and processes between the conceptual (M0) and the Neural ODE (M50, M100) models

(see Section 4).

First, for benchmarking, the following metrics are used: The Nash-Sutcliffe efficiency (NSE), as defined in Equation (3)

with α = 2, compares the used model to simply using the average of observed discharges for predictions. With NSE < 0, the

model is worse than just using the model average, while the maximum value of 1 indicates perfect fit. Values above 0.55 are205

considered to represent "some model skill" (Newman et al., 2015). Generally, there is no fixed scheme to interpret NSE values

but rules of thumb are available (see Moriasi et al., 2007; Schaefli and Gupta, 2007). Following Legates and McCabe Jr (1999),

NSE (α = 2) is only a special case of the so-called coefficient of efficiency over N corresponding observed Qobs and simulated

Qsim discharge values:

CoEα = 1−
∑N

i=1 |Qobs,i−Qsim,i|α∑N
i=1 |Qobs,i−Qobs|α

(3)210

Another special case with α = 1 is referred to as modified coefficient of efficiency (Legates and McCabe Jr, 1999) or, briefly,

as mNSE (Jiang et al., 2020). The values of mNSE (CoE1) can be interpreted similarly to NSE (CoE2). The mNSE, however,

gives less weight to extreme fluctuations than the NSE, which typically relate to peak flow. Hence, mNSE is better suited to

rate low and base flow. Peak flow is rated specifically by the percent bias in flow duration curve high-segment volume (Yilmaz

et al., 2008, FHV):215

FHV = 100 ·
∑H

h=1(Qsim:high,h−Qobs:high,h)
∑H

h=1 Qobs:high,h

(4)

,

where Qobs:high and Qsim:high refer to the sorted observed and simulated discharges in descending order, respectively. H

defines the number of highest values according to a chosen exceedance probability. Here, for comparability reasons, we use

the exceedance probability 0.01 like in Jiang et al. (2020). This means that FHV is based on the highest percent of discharges,220

opposed to the typical chosen exceedance probability of 0.02 (Yilmaz et al., 2008). The optimal value of FHV is 0. For com-

parability and since FHV values can become negative, we use only the absolute values like in Jiang et al. (2020) (where FHV

was renamed to absolute peak flow bias PFAB).

Second, the evaluation of internal model states and processes is conducted in direct comparison between the conceptual225

model M0 and the Neural ODE models M50 and M100: The dynamics of snow and water storages is inspected alongside the

model-specific estimated streamflow. Further, the internal processes for discharge, evapotranspiration and melting are isolated

and explored over plausible ranges of input variables and model states, e.g. discharge as a function of water storage. Additional

input variables to the neural networks in M50 and M100 that shall not be explored are kept fixed with catchment-specific values

(like mean temperature) as specified in Section 4.230
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3 Benchmarking Neural ODE Models

Figure 2 shows the distributions of the three evaluation metrics per evaluated model over all 569 considered catchments. NSE,

FHV and mNSE are displayed in one row per model, i.e. the two newly developed Neural ODE models (M50 and M100), the

conceptual model M0, and two state-of-the-art models. The shown performance values for both the hybrid CNN and LSTM

model are the original values from Jiang et al. (2020).235

Figure 2. Histograms of NSE (red; optimal value: 1), FHV (green; optimal value: 0) and mNSE (blue; optimal value: 1) for the developed

Neural ODE models M100 and M50, the plain conceptual baseline model M0 and state-of-the-art LSTM and external hybrid CNN models

(bottom, cf. Jiang et al., 2020).

For both FHV and mNSE, the M100 scores better in both mean and median than all other models. The distributions over

all catchments show clear shifts towards the optimal scores 0 for FHV and 1 for mNSE, respectively. Considering NSE, which
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is also the calibration metric, M100 outperforms all other models except for the hybrid CNN approach. Yet, both mean and

median NSE between the two models do only deviate by a small margin. Looking at the histograms, it can be seen that the

hybrid CNN model shows an accumulation of scores slightly above the median for NSE and mNSE and slightly below the240

median for FHV. Contrarily, the M100 achieves significantly higher scores for NSE and mNSE and lower peak flow errors. At

the tails of the histograms, especially M100 managed to reduce the number of bad results (NSE and mNSE below 0 and FHV

around 100 and above).

Considering M50 and M0, the Neural ODE model M50 achieves a significant improvement in all metrics over the plain245

conceptual model: NSE mean and median improve by about 0.15 and 0.23, respectively; mNSE increases in both statistical

moments by more than 0.1, while FHV drops by about 25%. This shows that the conceptual model significantly benefits al-

ready from substituting only two processes (ET and Q) by more flexible methods.

It can easily be seen that all models except for model M0 and LSTM achieve performances in a similar range with similar250

means and medians over all metrics although the distributions show noticeable differences. While M0 shows better FHV scores

with the whole distribution tending toward lower values, the LSTM is significantly better regarding NSE and mNSE. Yet, all

distributions for both models deviate clearly from the other models, showing significantly more bad values that are low (around

0.0) for NSE and mNSE and high for FHV. This is further discussed in Section 5.1 with a special focus on LSTM models.

255

4 Internal States and Processes of Neural ODE models

As with conceptual hydrologic models, the temporal dynamics of processes and states can directly be inspected and analysed

in the Neural ODE approach. We chose two exemplary basins for demonstration purposes: Fish River near Fort Kent, Maine

(ID: 1013500) and Spearfish creek, South Dakota (ID: 6431500). Figure 3 shows the time series of discharge, snow storage

and water storage states from the plain conceptual (M0) and the Neural ODE models (M50 and M100) for both basins. For dis-260

charge and snow storage, observations are available and are displayed, with the latter being the lumped snow water equivalent

(SWE) data. Note, that SWE was not used in the calibration.

The two basins cover different magnitudes for all depicted variables. For the basin 1013500, model predictions of the three

models are very similar. Discharge predictions of all models match observations very well which is also indicated by overall265

good metrics in Table 1. The agreement between models is weaker for snow storage although the general pattern is similar and

approximately matches observations. For basin 6431500, model predictions deviate more strongly and show a larger discrep-

ancy to data. As supported by rather bad performance metrics, model M0 underestimates baseflow in large parts and misses

both timing and flashiness of peaks.

270
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Table 1. Streamflow prediction performance based on NSE (optimum: 1), FHV (optimum: 0) and mNSE (optimum: 1) of the conceptual

model (M0) and both Neural ODE models (M50 and M100) for basins 1013500 and 6431500.

Basin 1013500 Basin 6431500

Model NSE FHV mNSE NSE FHV mNSE

M0 0.85 8.38 0.66 0.005 34.73 -0.28

M50 0.89 4.94 0.7 0.33 30.47 0.18

M100 0.91 5.41 0.73 0.54 9.14 0.19

In neither basin, the Neural ODE models do alter the snow storage component much from the plain conceptual model al-

though there are small differences in specific years. Overall, the models do catch the temporal pattern of snow accumulation but

there are discrepancies in the magnitude. The models for basin 1013500 show acceptable estimates while for basin 6431500

they tend to underestimate SWE systematically. At the end of each snow season, the models predict snow to disappears much

earlier compared to the observed values for most years. This issue is further discussed in Section 5.2. Regarding water storage,275

there is no data for a direct comparison available. For basin 1013500, all models strongly agree on the dynamics and magnitude

of the model state. This is different with model estimates for the second basin where the two Neural ODEs are similar with only

small deviations but both differ significantly from the conceptual model estimate. Apart from variations in the annual cycles,

M50 and M100 show much smaller variance while M0 indicates a general magnitude shift to higher water storage in the last

third of the testing period. Together with the significantly better scores in Table 1 of both Neural ODE models, this indicates280

that M0 might not be a suitable choice as model for this particular basin.
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(a) (b)

Figure 3. Time series of data and model predictions from models M0, M50 and M100 for discharge (top), snow storage (center) and water

storage (bottom; no data) for the test period in basin 1013500 (a) and in basin 6431500 (b).

Aside of direct inspection, we analyse internal processes over plausible ranges of input variables investigating discharge,

evapotranspiration and melting. Figure 4 shows the relations between water storage S1 and discharge Q for models M0 (hard-

coded, Equation A5), M50 (learned by NN50
Q ) and M100 (learned by NN100) for both basins.285

All three discharge to water storage relations are very similar for small to medium water storage values. Beyond, strong

differences evolve: In basin 1013500, the hard-coded relation in M0 shows a strong increase for large values of S1 reaching

values much higher than the maximum discharge that was observed over both the training and the testing period. At the same

time, M50 shows a linear trend for large water storages underestimating the maximum observed discharge slightly. For basin290

6431500 it is the opposite, M0 underestimates discharge and model M50 shows a strong tendency to overshoot. In both basins,

M100 shows the most plausible relation.
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(a) (b)

Figure 4. Relation between water storage and discharge in basin 1013500 (a) and basin 6431500 (b) for models M0 (hard-coded relation),

M50 and M100 (learned by neural network, with additional neural network inputs snow storage fixed at 0 for both M50 and M100, and both

precipitation and temperature fixed at basin averages over the training period).

The Neural ODE approach allows to directly analyse the impact of additionally assigned variables to specific processes.

Both neural networks NN50
Q and NN100 in M50 and M100, respectively, also use precipitation as input. Figure 5 depicts295

the relations of discharge to water storage and precipitation for the three models in each basin. Note that the magnitudes of

discharge vary between basins and that discharge in the conceptual model M0 depends only on water storage. For model M0,

the very high discharge predictions in basin 1013500 and the very low ones in basin 6431500 are clearly shown in Figure 5 (a)

and (b), respectively.

300

For basin 1013500, models M50 and M100 show an overall similar pattern in Figure 5 (c) and (e), respectively, with M100

reaching higher magnitudes. Both models locate the highest discharge in the same region of high water storage and medium to

low precipitation. For very small precipitation at high water storage especially M100 indicates a slight decline in discharge. In-

terestingly, neither model shows an increase of discharge with stronger precipitation. The decline in discharge could be related

to the lower frequency of strong rain events in the basin and the resulting detriment of the neural networks to learn another305

relation. Hence, it might be subject to higher uncertainty in this variable range. This is further discussed in Section 5.2.

The expected trend of increasing discharge for increasing rain is clearly visible for both model in basin 6431500 (Figure

5 (d) and (f)). Notably, a peak in discharge for high water storage and small rain rates is visible similarly to the other basin.

Investigations about whether this could be an indication of a general non-linearity required further discussion (see Section 5.2).310
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Dependence of discharge on precipitation (rain) and water storage for Neural ODE models M0, M50 and M100 in basin 1013500

(left; (a),(c),(e), respectively) and in basin 6431500 (right; (b),(d),(f), respectively). For NN100 the additional neural network input snow

storage was fixed at 0 in both basins and temperature was fixed at the average temperatures over the training period (7.7◦C for basin 1013500

and 10.52◦C for basin 6431500).
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Figure 6 depicts the models’ dependences of the evapotranspiration terms (without Lday) on temperature and water storage.

Note that the magnitude ranges of evaportranspiration indicated by colors are the same between the basins. The hard-coded

relation according to Hamon’s formula in the conceptual model M0 shows the most regular behaviour in Figure 6 (a) and (b)

for both catchments: for temperatures below 0◦C there is very small to no evapotranspiration. Overall, increasing temperatures

or water storages are associated to increasing evapotranspiration although the general magnitude is smaller for basin 6431500.315

For basin 1013500, M0 shows significantly higher ET estimates over a large range of temperature-water storage combina-

tions compared to the other two models. M50 reaches maximal ET only in the region of medium to high water storage and very

high temperatures (extreme to unrealistic for the considered basin) as shown in 6 (c). The general trend of higher ET for higher

temperature is also learned by the NN50
ET , but the pattern is not as regular as in M0. In particular, for water storage values320

at the extremes, a decrease of evapotranspiration is assumed. This indicates that either the water storage-ET relation is not as

proportional in these regions as assumed by Hamon’s formula, or there is a lack of datapoints covering these ranges making

it challenging for NN50
ET to elicit the underlying relation . Nonetheless, the elicited relation appears plausible in particular for

small water storage.

325

In contrast to M50, M100 shows a much more regular dependence of ET on temperature and water storage as shown in

Figure 6 (e). It shows the same regular increase of ET with temperature as in M0 but a smaller dependence on water storage.

Yet, the magnitude of ET estimated by the neural network in M100 is generally significantly smaller. Hence, according to

M100, evapotranspiration plays a generally smaller role in the water balance.

330

In basin 6431500, both models show a much more similar pattern for the maxima of evaportanspiration (6 (d) and (f))

although M100 indicates a much stronger increase in magnitude for rising temperatures and water storage. In contrast to Ha-

mon’s formula in M0, the neural networks do not allocate strong ET rates to small to medium water storages even for higher

temperatures, but both models depict higher rates even for lower temperatures if water storage is high.

335
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Dependence of evapotranspiration on temperature and water storage for Neural ODE models M0, M50 and M100 in basin 1013500

(left; (a),(c),(e), respectively) and in basin 6431500 (right; (b),(d),(f), respectively). For NN50
ET and NN100 the additional neural network

input snow storage was fixed at 0 in both basins, and precipitation for NN100 was fixed at the average over the training period (3mm/d for

basin 1013500 and 1.9mm/d for basin 6431500).
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The effect of snow storage and temperature on melting rates is displayed in Figure 7. M0 and M50 employ the same hard-

coded melting formula (see Equation A4) while in M100, the relation is learned by NN100. Note that magnitudes of melting

rates and snow storage range much higher in basin 1013500 than in basin 6431500. Despite some differences, there are also

general trends over all models and both basins: Plausibly, no relation show snow melt for temperature below 0◦C - this is

determined for M50 and M0 but also not altered in M100. For larger temperatures, melting rates constantly increase. The only340

exception are very small snow storage values where no to only slowly growing melting occurs in the models.

(a) (b)

(c) (d)

Figure 7. Dependence of melting rate on temperature and snow storage for Neural ODE models M0/M50 and M100 in basin 1013500 (left;

(a),(c), respectively) and in basin 6431500 (right; (b),(d), respectively). For NN100 the additional neural network inputs were fixed at basin

averages of water storage and precipitation (3mm/d for basin 1013500 and 1.9mm/d for basin 6431500) over the training period.

For M100 differences between the basins and from the hard-coded melting linear relationship in M0/M50 are clearly ob-

servable: For basin 1013500 (Figure 7 (c)) M100 shows the smoothest increase in the direction of higher temperatures and

higher snow storage and also reaches significantly higher magnitudes. Yet, with small but growing snow storage for higher345
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temperatures, M0/M50 shows a stronger increase over a smaller range. This increase is similar for M100 in basin 6431500

(Figure 7 (d)) although for higher snow storage there is a decline in melting rate over the entire range for temperatures above

15◦C. Being further discussed in Section 5.2, this could again be due to a lack of training points in a catchment of warmer

climate.

350

Of course, the highest temperatures covered in the above analysis are unrealistic to be associated to snow cover. Elevation

information that would make it possible to consider snow cover in high altitudes while having already warm temperatures in

lower parts of the catchment is neglected. Nonetheless, we demonstrate that a physical extrapolation and analysis of individual

processes is possible with the Neural ODE approach just as it is traditionally done with conceptual models.

355

5 Discussion

5.1 Benchmarking

All four machine-learning based hydrologic models show a significant improvement over the plain conceptual hydrologic

model M0. Results indicate that more information from training data can be leveraged by partial or pure data-driven models

and significantly higher rating scores are achieved. Arguably, the EXP-Hydro is a very simplistic bucket model and more so-360

phisticated conceptual hydrologic models exist that achieve higher scores (see SAC-SMA in Appendix A3). Yet, more complex

conceptual hydrologic models also require more tailored model features and higher parametrizations that again entail more as-

sumptions and fine-tuning.

Note that the displayed results for LSTM are the original values from Jiang et al. (2020). There, they were obtained by365

catchment-specific calibration and validation. However, over recent years, LSTM models have achieved much higher scores

when being calibrated to many catchments simultaneously while including also static catchment attributes (like topography,

climatic indices, etc.) as additional inputs to the model (Kratzert et al., 2019c; Feng et al., 2020). LSTM models have demon-

strated their ability to transfer learned relations between input variables, attributes and streamflow to unseen catchments, often

yielding highly accurate predictions. This application case of large-sample hydrology is however different from the application370

scenario here.

Despite their success, machine-learning models in hydrology like LSTMs are known for often underestimating high flow

events (Kratzert et al., 2018). They often miss sharp peaks as they regularly occur in hydrographs. Conceptual models with

their hard-coded peak flow relations are typically very good at this task. Both Neural ODE models - and especially M100 -375

show a significant improvement in this respect based on learned relations that do not have to use a threshold to distinguish

between base and peak flow. FHV scores of M50 are similar (yet still higher) to the hybrid CNN model that already showed an

improvement in peak flow prediction taking conceptual model predictions as additional model input (see Jiang et al., 2020).
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M100 achieves an even higher level of performance with a median of about 13 and a mean of about 16. The improved base

flow prediction performance is likewise indicated by highest mNSE scores (median 0.54 and mean 0.51). Overall, we summa-380

rize that Neural ODE models perform similarly well or better than alternative state-of-the art partial or pure machine learning

models.

5.2 Internal States and Processes

The overall better performance of Neural ODE models compared to plain conceptual models is associated to significant dif-385

ferences in the model internal dynamics and process relations. Results demonstrate that the pre-training of neural networks in

order to mimic hard-coded processes before the full Neural ODE training does not prevent the neural networks from learning

new and vastly different relations. With Neural ODEs being built on the same conceptual model structure, individual states and

processes can easily be analysed and compared between different models or they can be investigated over specific ranges of

input variables and models states.390

In the variable ranges where much data was available the Neural ODE models elicited plausible relations for the investigated

processes. Yet, the analyses indicated that a lack of training data in the extreme ranges of the process dependent variables

increases uncertainty and might indicate counter-intuitive relations. 20 years of training data for a single catchment typically

do not provide enough information to certainly extrapolate towards these limits. Although general process trends often ap-395

peared to be plausible, there are cases (e.g. a decrease of melting rate for growing snow storage) that are hardly explainable

and presumably require more data to be refined. Having similar relations despite using more data could then help investigating

counter-intuitive process dynamics. Further, the lumped model structure with only a few processes forces parameters to falsely

take up information from data although it should inform another (not included) process. This might additionally exacerbate

the elicitation of clear relations. As remedy, a more detailed conceptual structure might improve the encoding of underlying400

functional relations.

When looking at discharge and snow storage dynamics for both of which data are available, further potentials and limita-

tions of the approach are observable: The Neural ODE models show much higher accuracy than the plain conceptual model

in stream flow prediction. For discharge in the small and medium range of water storage, Neural ODE models do not alter405

the functional dependence to water storage from the conceptual model much. However, they deviate significantly for the high

regime requiring no separation between base and peak flow. Further, they allow modellers to investigate the direct impact of

other variables like precipitation on discharge. These dependencies learnt by the neural networks might help developing more

sophisticated discharge relations.

410

Despite the close agreement between M0/M50 and M100 regarding their predictions of snow in both considered basins, all

models depict limitations of the lumped snow storage approach: Melting of snow is often predicted earlier than shown for the
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catchment by data (see Figure 3). In higher altitudes, snow stays much longer and new precipitation might also fill the snow

storage there even if in lower altitudes spring and summer might already have started. Using only lumped driving forces like

average temperature as input variable to the model prohibits the models to account for these effects and leads to potentially415

inaccurate estimates. Since the CAMELS dataset provides elevation-bands data for snow water equivalent, we assume that

including elevation-resolved snow storage units in the Neural ODE models might improve this significantly.

6 Conclusions and Outlook

Hydrologic Neural ODE models fuse the modular bucket-type structure of conceptual hydrologic models with machine learn-420

ing. Plainly spoken, Neural ODE models are conceptual hydrologic models with deep learning cores. The presented models

M50 and M100 depict hydrologic implementations of the general Neural ODE approach (Chen et al., 2018; Rackauckas et al.,

2020) - and up to our knowledge the first ones in hydrology. The substitution of constitutive functions by neural networks has

shown to significantly increase predictive performance compared to a plain conceptual model while keeping the same natural

physical constraints. Overall, hydrologic Neural ODE models perform similarly well to or better than state-of-the-art pure or425

partial machine-learning models, but overcome three different limitations of former approaches as introduced in Section 1:

First, using the conceptual hydrologic model structure preserves the interpretability of the model as traditionally given by

conceptual models and appreciated by the hydrologic community. Internal model states and processes can directly be inspected

for plausibility, and their physical interpretation fosters system understanding. The Neural ODE approach might further trigger430

advancement in a more fundamental manner of building “conceptual” models: Theoretically, modellers only need to set up the

conceptual framework but do not have to specify parametrizations within the model and let the neural networks learn plausible

relations. Potentially, even features that are often neglected in typical conceptual models, like hysteresis (Gharari and Razavi,

2018), could be elicited.

435

Second, the Neural ODE allows for continuous time solutions. In principle, this also allows to include data on an irregular

temporal resolution for both training and testing. Physical principles and mechanistic structure act as guide rails that are nat-

urally included and do not have to be learned or enforced as with pure machine learning approaches. At the same time, the

method is flexible enough to learn constitutive relations from data.

440

Third, our approach invites prior physical knowledge to be incorporated into the model. For instance, the Neural ODE ap-

proach allows to include processes that are fully known as hard-coded features like a sewage treatment plant discharging into

the stream at a known temporal pattern. Locally, expert knowledge might be available about hydrologic systems that can be ac-

counted for. Pure data-driven methods might not be able to infer this knowledge from data alone and pure mechanistic models

20

https://doi.org/10.5194/hess-2022-56
Preprint. Discussion started: 10 March 2022
c© Author(s) 2022. CC BY 4.0 License.



might not provide the desired flexibility like Neural ODE models.445

In principle, the introduced approach can be applied to any conceptual hydrologic model. Numerous alternative bucket-type

models and frameworks exist that can be fused with neural networks partially or entirely. The number of states and processes

is adjustable according to specific requirements of the modelling problem at hand, or in a more generic setup for multiple

catchments. Already the used EXP-Hydro model as rather simplistic example of conceptual model facilitated a drastic im-450

provement of model performance when used as basis for Neural ODE models. Many sophisticated conceptual models exist

(like SAC-SMA) that could serve as a framework for also more sophisticated hydrologic Neural ODE models.

With the hydrological Neural ODE model we seek to introduce a tool in-between existing top-down and bottom-up ap-

proaches that paves the way for various subsequent research routes. For example, the deterministic model can be made proba-455

bilistic to enable uncertainty assessments as currently performed for stochastic hydrologic models (Reichert et al., 2021). Also,

due to its generic setup, the Neural ODE approach appears to be suitable for being trained with multiple basins simultaneously

including static attributes like in respective investigations for LSTM models (Kratzert et al., 2019c; Feng et al., 2020; Jiang

et al., 2020). This large-sample hydrology setting might be particularly useful to further investigate process relations data-

scarce variable ranges. We will investigate this in a subsequent step.460

Code availability. All software was written in the programming language Julia. A working example will be made available in the near future.

Appendix A:

A1 EXP-Hydro Equations

The simple rainfall-runoff model EXP-Hydro (Patil and Stieglitz, 2014) comprises of only two state variables representing465

buckets, five mechanistic processes and 6 parameters Θ (see Table A1). There are three inputs to the model: length of day

Lday , temperature T and precipitation P .
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Table A1. EXP-hydro parameter definitions, meaning and units (cf. Patil and Stieglitz, 2014)

Parameter Original definition Meaning Units

Θ1 Tmin snow fall temperature ◦C

Θ2 Tmax snow melt temperature ◦C

Θ3 Df thermal degree-day factor mm(day ·◦ C)−1

Θ4 Smax maximum water storage mm

Θ5 f runoff decline rate mm−1

Θ6 Qmax maximum subsurface runoff mm · day−1

For ease of readability and comparability to Jiang et al. (2020), parameters are written like in Table A1 as they were originally

defined by Patil and Stieglitz (2014). Further, the storage state Ssnow is written as S0 and Swater is written as S1. For ease of

readability dependence on time is implicitly assumed and t is dropped. Moreover, the driving forces and model states relevant470

for each process are explicitly named. Hence, the processes in EXP-Hydro are formulated as:

– Precipitation as snow or rain:

Psnow(P,T ;Tmin) =





0 T > Tmin

P otherwise
(A1)

Prain(P,T ;Tmin) =





P T > Tmin

0 otherwise
(A2)

– Evapotranspiration:475

ET (T,Lday,S1;Smax) =





PET (T,Lday) · (S1/Smax) 0≤ S1 ≤ Smax

PET (T,Lday) S1 > Smax

(A3)

originally using Hamon’s formula (Hamon, 1963) for potential evapotranspiration PET (T,Lday) = 29.8 ·Lday
esat(T )
T+273.2 ,

with saturation water pressure esat(T ) = 0.611 · exp
(

17.3T
T+237.3

)
. Note that Lday is factored out in model M0 for ẼT .

There, we use P̃ET (T ) = PET (T,Lday)/Lday .

– Melting:480
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M(T,S0;Tmax,Df ) =





min(S0,Df · (T −Tmax) T > Tmax and S0 > 0

0 otherwise
(A4)

– Discharge:

Q(S1;f,Qmax,Smax) = Qbucket(S1,f,Qmax,Smax) +Qspill(S1,Smax) (A5)

with

Qbucket(S1;f,Qmax,Smax) =





Qmax · exp(−f · (Smax−S1)) 0≤ S1 ≤ Smax

Qmax S1 > Smax

(A6)485

and

Qspill(S1;Smax) =





0 0≤ S1 ≤ Smax

S1−Smax S1 > Smax

(A7)

A2 Rationales behind M50 and M100

With the substitutions from M0 to M50, we want to highlight two important features of the Neural ODE modelling approach.

First, physical knowledge can directly be included into the model: The ET prescription uses potential evapotranspiration based490

on Hamon’s formula (Hamon, 1963), in which length of day Lday is factored (see Appendix A1). This is a fully accessible

input variable to the model - for a certain latitude and time, it is a physically fixed information (that theoretically could also be

calculated within the model). When used in a multiplication as in the chosen ET prescription, it can therefore simply be kept as

a factor and only the rest of the ET formula has to be substituted and learned by a neural network. It is a plausible assumption,

that ET is proportional to the length of day as represented in the mechanistic description of Hamon’s formula referring to the495

light-activation of plants’ stomata. This proportionality is therefore kept in M50 when substituting the rest of the ET formula

by a neural network. As can be seen in the model scheme in Figure 1 (a), the NNET does not obtain Lday as input but instead

Ssnow as there could be interference of snow cover with evapotranspiration.

Second, in hydrologic models, discharge is often split up into (at least) a base flow component and an excess or peak flow500

component that acts above a certain threshold of the water storage. In the Neural ODE approach, these two flow components
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can be substituted by a neural network with a single output node because neural networks are particularly suited to learn

non-linearities. Hence, rather than defining an "artificial" threshold beyond which a new process is added, NNs can learn a

continuous relation between water storage and model inputs to discharge. Unlike the Q formula in M0, we added precipitation

as second input to the NNQ in M50 to potentially account for direct runoff.505

M50 is meant to demonstrate how strongly predictive performance can be increased by including some more flexible, data-

driven model parts, i.e. only partial modifications within the traditional modelling approach. This approach is similar to the one

in Bennett and Nijssen (2021) although there fixed time-stepping was applied, only one internal process was substituted and

the exact same inputs were given to the NN as were given to the mechanistic process. Further, their goal was not to ultimately510

enhance stream flow prediction but to substitute the internal process, i.e. the turbulent heat flux.

In the next step from M50 to M100, the other mechanistic processes that are "hard-coded" in the plain EXP-Hydro are also

substituted. These are to distinguish between precipitation as rain or snow and the melting process that transfers water from

the snow storage unit to the main storage unit. As opposed to ET and Q, over certain parts of the year, these processes are not515

occurring, e.g. if all snow was molten in spring, there is no melting process going on in summer. Hence the Neural ODE model

has to learn these regime differences. Again, Lday is factored out in the ET process, which highlights a feature of the Neural

ODE approach: If Lday shall be included it could also be given to the NN as input. Yet, the NN could also learn a relation

between Lday and Q which is physically implausible. In a plain machine-learning approach, this specific use of Lday cannot

be as easily assigned.520

A3 SAC-SMA

The current benchmark hydrologic model for the CAMELS-US dataset is the Sacramento-soil moisture accounting model

(SAC-SMA; see Newman et al., 2015, and references therein). The simulated discharge values from the SAC-SMA model

used for evaluation are taken from the CAMELS dataset (Addor et al., 2017) (discharge predictions for test period 1.10.2000 -525

30.9.2010).

Note, however, that training and testing periods for the SAC-SMA were different from those used here. The SAC-SMA

was calibrated with a split-sample approach where 30 years of data (1.10.1980 to 30.9.2010) were split up into two parts each

covering 15 years. For details refer to Newman et al. (2015). In contrast, we used the first 20 years for training and the last 10530

years for testing. The scores of NSE, FHV and mNSE for the SAC-SMA model shown in Figure A1 are evaluated for this 10

years testing period. Hence, the results should only be considered as indication and not as strict assessment when being directly

compared to the results in Section 3.
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Figure A1. Histograms of NSE (red; optimal value: 1), FHV (green; optimal value: 0) and mNSE (blue; optimal value: 1) for the SAC-SMA

model over 569 basins.

Figure shows the overall performance of the SAC-SMA model on all the 569 basins for the testing period. It is significantly535

better than the simple conceptual EXP-Hydro model implemented as M0 and it achieves comparable levels of performance

compared to the partial and pure machine-learning models evaluated (see Section 3). Yet, it does not score better than these

although many more processes and interrelations (and corresponding assumptions) were put into the model: 20 of in total 35

parameters were calibrated and the rest adjusted according to expert knowledge (Newman et al., 2015). This demonstrates that,

in principle, conceptual models do have the ability to reach high scores in model rating - but come with comparably high effort540

in setup, tuning and adjustment compared to pure or hybrid machine learning based methods.
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